Modelling microbial motion: the case of Chlamydomonas reinhardtii

CIBIO Centre for Integrative Biology

Author: Luca Pizzagalli

Supervisor: Prof. Gianluca Lattanzi

Academic year 2017/2018

Chlamydomonas reinhardtii

chlamydomonas reinhardtii moves beating two forward flagella
Alper Joshua et al. Methods in Enzymology, 2013
  • Green algae, a single cell eukaryotic organism 10μm \approx 10 \mu m
  • Model organism in biology, studied for photosynthesis and ciliary functions
  • Possible source of useful proteins and bio-fuels

How does it move

  • Puller micro-swimmer
  • Breast-stroke motion
  • Run and tumble:
    straight swims alternated with rapid rotations
Alper Joshua et al. Methods in Enzymology, 2013

How to define a model for the motion of C. reinhardtii?

  • Run and tumble motion
  • Interaction with obstacles
  • Results coherent with experiments

The Model

2D Asymmetric dumbbell, a sphere for the cell's body and a sphere for the area covered by the beating flagella

C. reinhardtii with a spherical body and two flagella
dumbbell model composed of two spheres
Wysocki Adam et al. Phys. Rev. E, May 2015

Equations of motion

dr(t)dt=v0e(t)+μF(r,e)+η(t) \frac{d\boldsymbol{r}(t)}{dt} = v_0 \boldsymbol{e}(t) + \mu \boldsymbol{F}(\boldsymbol{r},\boldsymbol{e}) + \boldsymbol{\eta}(t)

η(t)η(t)=2kbTμ1δ(tt) \langle \boldsymbol{\eta}(t) \boldsymbol{\eta}(t') \rangle = 2 k_b T \mu \boldsymbol1 \delta (t-t')

Forces

F(r,e)=F(rb)+F(rf) \boldsymbol{F}(\boldsymbol{r},\boldsymbol{e}) = \boldsymbol{F}(\boldsymbol{r}_b) + \boldsymbol{F}(\boldsymbol{r}_f)

=Ub(rb)Uf(rf) = -\nabla U_b(\boldsymbol{r}_b) - \nabla U_f(\boldsymbol{r}_f)

A force is applied on each sphere.

Truncated Lennard-Jones potential:

Ub(rb)=4ϵkbT[(abrbrw)12(abrbrw)6]+ϵ U_b(\boldsymbol{r}_b) = 4 \epsilon k_b T \Big[\Big(\frac{a_b}{|\boldsymbol{r}_b - \boldsymbol{r}_w|}\Big)^{12} - \Big(\frac{a_b}{|\boldsymbol{r}_b - \boldsymbol{r}_w|}\Big)^6\Big] + \epsilon

Uf(rf)=4ϵkbT[(afrfrw)12(afrfrw)6]+ϵ U_f(\boldsymbol{r}_f) = 4 \epsilon k_b T \Big[\Big(\frac{a_f}{|\boldsymbol{r}_f - \boldsymbol{r}_w|}\Big)^{12} - \Big(\frac{a_f}{|\boldsymbol{r}_f - \boldsymbol{r}_w|}\Big)^6\Big] + \epsilon

Direction

de(t)dt=(T(r,e,t)τ+ξ)×e(t) \frac{d\boldsymbol{e}(t)}{dt} = \Big( \frac{\boldsymbol{T}(\boldsymbol{r},\boldsymbol{e}, t)}{\tau} + \boldsymbol{\xi} \Big) \times \boldsymbol{e}(t)

ξz(t)ξz(t)=2kbTτpδ(tt) \langle \boldsymbol{\xi}_z(t) \boldsymbol{\xi}_z(t') \rangle = \frac{2 k_b T}{\tau_p} \delta (t-t')

Direction

Alternative expression, more useful for numerical computation

dϑ(t)dt=Tz(r,ϑ)τ+ξz(t) \frac{d \vartheta(t)}{dt} = \frac{T_z(\boldsymbol{r},\vartheta)}{\tau} + \xi_z(t)

Direction

T(r,e,t)=Tb+Tf=c(e×Fb)+(lc)(e×Ff) \boldsymbol{T}(\boldsymbol{r},\boldsymbol{e}, t) = \boldsymbol{T}_b + \boldsymbol{T}_f = -c (\boldsymbol{e} \times \boldsymbol{F}_b) + (l-c) (\boldsymbol{e} \times \boldsymbol{F}_f)

Tumble

T(r,e,t)=Tw(r,e)+Tt(t) \boldsymbol{T}(\boldsymbol{r},\boldsymbol{e}, t) = \boldsymbol{T}_w(\boldsymbol{r},\boldsymbol{e}) + \boldsymbol{T}_t(t)

  • Time between two tumbles: exponential distribution with average 11.2s 11.2 s
  • Tumble duration: Gaussian distribution with average 2s 2 s
  • Tumble strength: Gaussian distribution with average 0.75rad/s 0.75 rad/s

Parameters

variable
aba_b
aja_j
ll
cc
v0v_0
kbTμk_b T \mu
τpkbT\frac{\tau_p}{k_b T}
τkbT\frac{\tau}{k_b T}
ϵ\epsilon
μ[ts]\mu [ t_{\text{s}} ]
μ[Ttτ]\mu [\frac{T_t}{\tau} ]
σ[Ttτ]\sigma [ \frac{T_t}{\tau} ]
μ[tt]\mu [ t_{\text{t}} ]
σ[tt]\sigma [ t_{\text{t}} ]
valuem. u.
5.05.0μm\mu m
7.57.5μm\mu m
7.57.5μm\mu m
0.00.0μm\mu m
6011060 - 110μm/s\mu m/s
????μm2/s\mu m^2/s
????ss
0.150.15ss
101011
11.211.2ss
0.750.75rad/srad / s
0.750.75rad/srad / s
2.02.0ss
1.51.5ss

Experimental Validation

Mean square displacement in open space from experiment.
Vasily Kantsler et al. PNAS, January 2013

Mean square displacement from experiment in open space

  • Short time: ballistic behavior
  • Long time: diffusion behavior

Experimental Validation

Radial probability in confined space from experiment.
Tanya Ostapenko et al. Phys. Rev. Lett., February 2018

Radial probability P(r) P(r) in confined environment

P(r)=h(r)2πrΔr0Rh(r)2πrΔrdr P(r) = \frac{\frac{h(r)}{2 \pi r \Delta r}}{\int_{0}^{R}\frac{h(r')}{2 \pi r' \Delta r} d r'}

Numerical Simulation

Experiment

Tanya Ostapenko et al. Phys. Rev. Lett., February 2018

Experimental Validation

Experiment

Mean square displacement in open space from experiment.

Simulation

Mean square displacement in open space from simulation.

Experimental Validation

Experiment

Radial probability in confined space from experiment.
Tanya Ostapenko et al. Phys. Rev. Lett., February 2018

Simulation

Radial probability in confined space from simulation.

Parameters

variable
aba_b
aja_j
ll
cc
v0v_0
kbTμk_b T \mu
τpkbT\frac{\tau_p}{k_b T}
τkbT\frac{\tau}{k_b T}
ϵ\epsilon
μ[ts]\mu [ t_{\text{s}} ]
μ[Ttτ]\mu [\frac{T_t}{\tau} ]
σ[Ttτ]\sigma [ \frac{T_t}{\tau} ]
μ[tt]\mu [ t_{\text{t}} ]
σ[tt]\sigma [ t_{\text{t}} ]
valuem. u.
5.05.0μm\mu m
7.57.5 μm\mu m
7.57.5μm\mu m
0.00.0μm\mu m
101011
7070μm/s\mu m/s
1414μm2/s\mu m^2/s
2.02.0ss
2.02.0ss
11.211.2ss
0.750.75rad/srad / s
0.750.75 rad/srad / s
2.02.0ss
1.51.5 ss

Dependence on parameters

Propulsion Speed

Msd in open space

MSD in open space as a function of speed.

P(r) P(r) in confinement

Radial probability in confined space as a function of speed.

Rotational Axis

Msd in open space

MSD in open space as a function of the position of the rotational axis.

P(r) P(r) in confinement

Radial probability in confined space as a function of the position of the rotational axis.

Rotational Axis

Stronger arm, and thus torque, when the rotational axis is far from the cell's center.

Tumble Strength

Msd in open space

MSD in open space as a function of tumble strength.

P(r) P(r) in confinement

Radial probability in confined space as a function of tumble strength.

Translational Noise

Msd in open space

MSD in open space as a function of translational noise strength.

P(r) P(r) in confinement

Radial probability in confined space as a function of translational noise strength.

Rotational Noise

Msd in open space

MSD in open space as a function of rotational noise strength.

P(r) P(r) in confinement

Radial probability in confined space as a function of rotational noise strength.

Collective Behavior

Four components for the force:

F(r1,e1,r1,e2)=Ubb(r1,b,r2,b)Uff(r1,f,r2,f)Ubf(r1,b,r2,f)Ubf(r1,f,r2,b) \boldsymbol{F}(\boldsymbol{r}_1,\boldsymbol{e}_1,\boldsymbol{r}_1,\boldsymbol{e}_2) = \\ -\nabla U_{bb}(\boldsymbol{r}_{1, b},\boldsymbol{r}_{2, b}) - \nabla U_{ff}(\boldsymbol{r}_{1, f},\boldsymbol{r}_{2, f}) \\ - \nabla U_{bf}(\boldsymbol{r}_{1, b},\boldsymbol{r}_{2, f}) - \nabla U_{bf}(\boldsymbol{r}_{1, f},\boldsymbol{r}_{2, b})

from truncated Lennard-Jones potentials

Diffusion

Linear density of a diffusion of C. reinhardtii in a test tube, 1 minute after centrifugation.

Experiment

Linear density after diffusion from experiment.
Polin Marco et al. Science, Jul 2009

Simulation

Linear density after diffusion from simulation.

Conclusions

The model developed is powerful enough to reproduce:

chlamydomonas reinhardtii moves beating two forward flagella
  • Ballistic and diffusive behavior in open space
  • Long retention times when near convex walls
  • Diffusion of cells in a suspension

Conclusions

The quantitative results are in good agreement with the experimental values, but:

  • Some parameters are tuned to experiments
  • Results show a significant dependence on the parameters used
chlamydomonas reinhardtii moves beating two forward flagella

Conclusions

Further extensions could take into account how the cell perceives the environment and modifies its behavior accordingly, including:

Chlamydomonas reinhardtii moves beating two forward flagella.
  • Chemotaxis
  • Gravitaxis
  • Phototaxis

Thank you for your attention